Analysis of Green Jobs Potential for Green Economy Development in West Java Province

Hashifati Ajrina¹

Depok City Bappeda Email: ajrina.litbang@gmail.com

Hashifati Ajrina

Email: ajrina.litbang@gmail.com

Affiliation: Regional Development Plannning and Research Agency of Depok City, Indonesia

Submitted: Feb 4 2025; Revised: Mar 25 2025;

Accepted: Apr 15 2025; Online Publication: Jun 30 2025;

© Hashifati Ajrina

This work is licensed under the Creative Commons Attribution Noncommercial Share Alike 4.0 International License

Abstract

West Java Province is one of the regions in Indonesia with the highest number of job seekers, reaching 542,150 people in 2023, while available job vacancies were only 158,700 (29% of total job seekers). At the same time, West Java has abundant natural resources, including agriculture, plantations, fisheries, forestry, minerals, tourism, and renewable energy, which provide great potential for green economic development. However, climate change, resource consumption patterns, demographic shifts, deforestation, and land conversion pose threats to biodiversity, food security, and employment in green sectors. The number of farmers and workers in sustainable industries continues to decline, raising concerns about job losses and future food crises. In response, the green economy and green jobs emerge as solutions to balance economic prosperity and environmental sustainability. According to the International Labor Organization (ILO), green jobs promote efficient resource use, energy conservation, and environmental restoration. This study analyzes green job potential in West Java through qualitative and quantitative methods. The qualitative approach examines challenges and opportunities in sustainable employment, while the quantitative method, using input-output modeling, maps green sector activities in West Java's economy. Findings indicate that manufacturing (IDR 1,099.08 trillion), agriculture (IDR 221.65 trillion), transportation (IDR 155.10 trillion), and renewable energy (IDR 12.22 trillion) are key contributors to sustainable employment expansion. This study highlights policy recommendations such as tax incentives for green industries, subsidies for eco-friendly transportation, investment in renewable energy, and workforce training for sustainable jobs. By implementing these strategies. West Java can accelerate its transition to a green economy, enhance economic resilience, and align with the Regional Medium-Term Development Plan (RPJMD).

Keywords: Green Jobs, Employment, Sustainability, Green Economy, West Java Province

----- **♦** -----

INTRODUCTION

West Java, as one of the provinces with the highest number of job seekers in Indonesia. According to data from the Ministry of Manpower in 2023, the number of job seekers in West Java reached 542,150 people, while the number of registered job

vacancies available in West Java was only able to accommodate 158,700 people. West Java in this case faces significant challenges in overcoming the high demand for labor and the large unemployment rate.

On the other hand, West Java Province has high natural resource potential, including in agriculture, plantations, fisheries, livestock, water resources, minerals and mining, tourism, forests and biodiversity to renewable energy. West Java Province is known as one of the national rice barns for the past 30 years, as it has contributed around 22% of national rice production. However, changes in the earth's climate, resource consumption patterns, and the demographic bonus pose a serious threat to biodiversity. The ensuing demographic bonus, referring to a temporary increase in the working-age population, will also pose a challenge. If not managed properly, it may accelerate environmental degradation and hinder the achievement of sustainable economic development. This will be a serious threat not only to nature but to the population and economic conditions especially in West Java.

In this context, the concept of green economy has emerged as a promising solution to achieve prosperity and welfare while minimizing the risk of ecological damage due to unjust development. According to the International Labor Organization (ILO), green jobs are the creation of economically viable jobs that reduce energy and raw material consumption. Green jobs are not only economical but also contribute significantly to preserving and restoring the environment, with a focus on improving energy efficiency, reducing greenhouse gas emissions, minimizing waste and pollution, and protecting and restoring ecosystems. In addition, green jobs support adaptation to climate change and play a role in stimulating the green economy.

Based on this, it is important to identify the potential of green jobs in West Java, as well as analyze the challenges and opportunities faced in the development of the sector. Therefore, this research asks several main questions, namely how the potential of green jobs in West Java can be identified, what are the challenges and opportunities, and the strategies that can be implemented to create sustainable and inclusive green jobs in the region. This research aims to contribute to the understanding of the potential of green jobs and develop strategies that support the development of sustainable green jobs in West Java.

LITERATURE REVIEW

Concept of Green Jobs

The concept of green jobs includes integrated social and environmental dimensions. Green jobs are defined as jobs that meet the pillars of decent work as formulated by the International Labour Organization (ILO) and are generated through economic activities that contribute to the reduction of environmental impacts (International Labour Organization, 2020). These jobs include efforts to reduce the consumption of energy and raw materials, decarbonize the economy, protect ecosystems and biodiversity, and minimize the production of waste and pollution.

According to the definitions of the United Nations Environment

Programme (UNEP) and the ILO, green jobs are not only oriented towards environmental sustainability, but also ensure that social aspects, such as decent working conditions, are met. Defining the boundaries of green jobs in each economic sector requires a careful approach, especially in the context of data limitations that often make it difficult to separate environment-related jobs from other jobs. Green jobs are not only oriented towards environmental sustainability, but also ensure that social aspects, such as decent working conditions, are met. Examples include jobs like renewable energy technicians, sustainable agriculture workers, and environmental engineers. This is important to ensure that jobs categorized as green jobs truly meet environmental and social sustainability criteria.

Analisis Input-Output

The Input-Output (I-O) model, introduced by Dr. Wassily Leontief in the 1930s and later earning him the 1973 Nobel Prize, illustrates the interdependence between economic sectors. This model highlights how sectors rely on one another, where the output of one sector serves as the input for another. Economic integration is essential for sustainable development, as disruptions in one sector can impact others (Firmana & Tjahjawandita, 2016).

The I-O model categorizes economic interactions into direct, indirect, and total impacts, helping to identify key sectors that drive regional growth. Each region has critical economic sectors based on their contribution to the regional economy and inter-sectoral linkages. By analyzing sectoral relationships, policymakers can plan development strategies that enhance economic stability and integration.

According to Daryanto (2010), a sector is considered vital if it meets at least one of four criteria: (a) strong forward and backward linkages, (b) high gross production and final demand support, (c) significant net foreign exchange earnings, or (d) substantial employment creation. Identifying these sectors allows for targeted policies that maximize economic growth and job creation.

Methods Used to Estimate Environment-Related Employment (Input-Output Analysis)

The input-output modeling approach can also be used to estimate the impact on employment resulting from an increase in final demand for products or services in a particular green industry. For example, this method allows estimating the number of jobs directly created in the sustainable construction industry for every US\$1 million investment in a construction project. In addition, it can also calculate the number of indirect jobs created in other sectors, such as the timber and building materials industries, due to such spending. Thus, the input-output model provides a

comprehensive estimate of the economy-wide employment impact as a result of a given level of spending.

This guide is designed to assist individuals and organizations in analyzing the relationship between the environment and employment, particularly in the context of developing countries. The guide covers the systematic steps of understanding and identifying drivers of green job creation; mapping the size and structure of national economies; estimating the total scale of environment-related jobs, including those that are viable or environmentally sustainable; and identifying core environment-related jobs based on compliance with relevant standards and performance indicators. In addition, the guide also leads to the estimation of jobs that meet decent work conditions according to the ILO definition, indirect jobs, and induced jobs from core environment-related activities. The process also includes recommendations for upgrading undeserved environmental jobs to green jobs through improved environmental and social performance, in accordance with ILO standards. As such, this approach offers a comprehensive framework for understanding, measuring and enhancing the contribution of green jobs to sustainable development.

Multiplier Effect Concept

One of the consequences of doing something is the multiplier effect. When money is put in or taken out, the final income will rise or fall by a certain percentage, this is called the "multiplier effect" in economics. According to Domanski and Gwosdz, the term "multiplier effect" describes the positive and negative impact of an action in one area on actions in another area, either directly or indirectly related to the action. In economics, the multiplier effect is seen in GRDP which can increase income, create jobs for the community, and establish links with related industries as a result of higher profits from production in that area.

RESEARCH METHODS

This study applies descriptive quantitative methods to evaluate the impact of green job creation on environmental and employment policies. The data sources used in this study mainly come from secondary data, consisting of reports and development planning documents in West Java as well as information from the Central Statistics Agency (BPS) for 2023 related to employment. These documents provide a comprehensive overview of the structure of the economy, the types of jobs available, and statistics relevant to the green sector. Some of the analyses conducted in this study include:

Identification of Priority Green Sectors

To identify priority green sectors, an analysis of the GRDP contribution of economic sectors is used with the following equation:

$$Ci = \frac{GDPi}{GDP\ Total} \ x \ 100$$

Ci = sector contributionGDPi = GDP value of sector iTotal GDP = total GDP value of all sectors.

This approach is used to understand the role of the green sector in the regional economy. Data sources are from the Central Bureau of Statistics (BPS) and regional economic reports (Miller & Blair, 2009).

Calculation of Employment Multiplier Effect

The employment multiplier effect is calculated to determine the direct, indirect, and induced impacts on employment due to an increase in green sector output. The basic formula used is:

$$EMi = \frac{Li}{Oi}$$

EMi = employment multiplier effect for sector i Li = number of workers in sector i

Oi =economic output of sector i

The multiplier effect is calculated with an input-output model using technical coefficients across sectors. This analysis allows estimation of the impact on employment generated by green sectors (Leontief, 1986).

With this descriptive quantitative approach, the research aims to produce findings that can be used as the basis for policy recommendations in supporting the development of sustainable and effective green jobs in West Java. Through an indepth understanding of the contribution of the green sector to the economy, it is hoped that this research can provide valuable input for policy makers and stakeholders in encouraging the sustainable growth of the green sector and creating quality jobs.

RESULTS AND ANALYSIS

Identification of priority green sectors in West Java

West Java has strong potential for green sector development, offering opportunities to enhance sustainability and tackle environmental challenges. According to the International Labour Organization (ILO, 2020), key areas for green growth include restoring green infrastructure, improving waste management, and expanding public transportation to lower carbon emissions. Sustainable agriculture and forestry practices, such as deforestation prevention and certification programs,

contribute to environmental conservation.

Additionally, innovations in manufacturing, supply chain management, and energy efficiency help reduce industrial emissions and support the transition to clean energy sources. Biodiversity preservation remains crucial for maintaining ecological balance and securing long-term sustainability. By leveraging these opportunities, West Java can strengthen its economic resilience while minimizing environmental impact (ILO, 2020).

Several key sectors in West Java contribute significantly to employment and offer opportunities for green initiatives. The Agriculture, Forestry, and Fisheries sector (17.79%) can adopt sustainable farming practices, while the Manufacturing Industry (17.98%) can implement green technology and circular economy principles.

The Wholesale and Retail Trade sector (21.84%) can promote eco-friendly supply chains, and Transportation and Warehousing (4.99%) can reduce emissions through green mobility solutions. Additionally, Education (4.72%) plays a vital role in sustainability awareness. These sectors hold strong potential for green job expansion, particularly in renewable energy and energy efficiency. Data on the main employment and percentage of the working population in West Java can be seen in the following table.

Table 1. Main Occupations and Total Working Population in West Java

Main Occupation	Total Working Population	Percentage
		(%)
A Agriculture, Forestry and Fishery /		17,79%
Agriculture, Forestry, and Fishery	4.160.000	
B Mining and Quarrying	50.000	0,23%
C Processing Industry / Manufacturing	4.210.000	17,98%
D Electricity and Gas Procurement /		0,23%
Electricity and Gas	50.000	
E Water Supply	130.000	0,55%
F Construction	1.770.000	7,57%
G Wholesale and Retail Trade / Wholesale		21,84%
and Retail Trade	5.110.000	
H Transportation and Warehousing /		4,99%
Transportation and Storage	1.170.000	
I Accommodation and Food Service		9,89%
Activities	2.310.000	
J Information and Communication	180.000	0,76%
K Financial and Insurance Services /		1,21%
Financial and Insurance Activities	280.000	
L Real Estate / Real Estate Activities	130.000	0,55%
M,N Company Services / Business Activities	350.000	1,49%

D ' 1D 1	(D1 ·	170 1 4	(D 1	O' T 1 '
Regional Develo	nment Planning	and Research A	loency of Denok	(ify Indonesia
ricgional Develo	pincin i idininis	una rescurenz	igency of Depon	City, madricola

O Public Administration	570.000	2,42%
P Education Services / Education	1.100.000	4,72%
Q Health Services and Social Activities /		1,40%
Human Health and Social Work Activities	330.000	
R,S,T,U Other Services Activities	1.210.000	5,16%

Source: Labor Force Situation in West Java Province February 2023

West Java's GRDP grew from Rp2,422.78 trillion in 2022 to Rp2,625.22 trillion in 2023, showing significant expansion across various sectors. Agriculture, forestry, and fisheries increased from Rp207.72 trillion to Rp221.65 trillion, driven by livestock growth. The manufacturing sector, the largest contributor, rose from Rp1,023.40 trillion to Rp1,099.08 trillion, fueled by the food and beverage and transportation equipment industries.

Other sectors also experienced growth: construction (Rp202.28T \rightarrow Rp221.15T), wholesale and retail trade (Rp348.99T \rightarrow Rp378.83T), and transportation and storage, which saw the highest increase (Rp130.20T \rightarrow Rp155.10T). Information and communication (Rp92.64T \rightarrow Rp100T) and education services (Rp80.34T \rightarrow Rp86.30T) also showed positive trends, reflecting West Java's diversified and sustainable economic expansion.

Table 2. GRDP at current prices by business field of West Java Province (billion Rupiah) for 2022-2023

CDD Cookers has Door's and E' ald	Year					
GDP Sector by Business Field	2022	2023				
A. Agriculture, Forestry and Fisheries	207716,7	221650,6				
B. Mining and Quarrying	27934,49	26089,3				
C. Processing Industry	1023401	1099081				
D. Electricity and Gas Procurement	12161,54	12221,17				
E. Water Supply, Waste Management, Waste and Recycling	2485,54	2575,78				
F. Construction	202276,6	221150,7				
G. Wholesale and Retail Trade; Repair of Cars and Motorcycles	348996,6	378832,7				
H. Transportation and Warehousing	130202	155099,8				
I. Provision of Accommodation and Meals	69670,16	79501,42				
J. Information and Communication	92644,33	100002,6				
K. Financial Services and Insurance	69885,94	74126,25				
L. Real Estate	28413,16	30746,38				
M,N. Corporate Services	10812	12091,47				
O. Government Administration, Defense and Compulsory Social Security	44535,07	46278,92				

P. Education Services	80336,14	86301,84
Q. Health Services and Social Activities	19157,24	20978,21
R,S,T,U Other Services	52154,05	58490,22
GDP TOTAL	2422782	2625219

Source: BPS data of West Java Province, 2024

Based on this data, it can be formulated that there are several potential sectors that support the green economy in West Java Province. In 2023, the Agriculture, Forestry and Fisheries sector recorded a GRDP contribution of IDR 221.65 trillion, an increase from IDR 207.71 trillion in the previous year. This sector absorbed 4.16 million workers, or 17.79% of the total workforce, with GRDP growth reaching 6.71% year-on-year. The food crop subsector was the dominant contributor with a contribution of IDR 96.12 trillion.

Table 3. Potential Sectors of Green Economy in West Java

Business Sector	GRDP 2023	GRDP Growth (%)	Number of	Percentage of
	(Billion Rupiah)		Workers	Labor
Agriculture and	221.650,6	6,71 %	4.160.000	17,79 %
Forestry				
Processing Industry	1.099.081	7,39 %	4.210.000	17,98 %
Electricity and Gas	12.221,17	0,49 %	50.000	0,23 %
Procurement				
Water and Waste	2.575,78	3,63 %	130.000	0,55 %
Management				

Source: Analysis results, 2024

On the other hand, the Manufacturing Industry sector showed the highest GRDP contribution at IDR 1,099.08 trillion in 2023, absorbed 4.21 million workers (17.98% of the total) and experienced GRDP growth of 7.39% year-on-year. This sector has great potential to transform towards green industry, especially in the food and beverage industry and environmentally friendly textile industry subsectors, which contribute IDR 146.34 trillion and IDR 168.83 trillion respectively.

The Renewable Energy sector, although smaller with a GRDP of IDR 12.22 trillion and absorbing 50,000 workers (0.23%), showed moderate growth of 0.49% year-on-year. Despite its current size, this sector is crucial for long-term sustainability and offers strategic opportunities for future job creation through clean energy development. There are further development opportunities in the electricity subsector which is valued at IDR 4.26 trillion.

Finally, the Water and Waste Management sector generated IDR 2.57 trillion in GRDP, with a labor absorption of 130,000 people (0.55%) and growth of 3.63% year-

on-year, also has the potential to develop a circular economy.

Calculating the employment multiplier effect in the green sector

The multiplier effect is an impact that occurs either directly or indirectly on various economic activities in the country/region as a result of changes in the exogenous variables of the national economy/region. For the multiplier impact analysis, it is necessary to calculate the multiplier matrix or also known as the Leontief inverse matrix (I-A)-1.

To obtain a multiplier effect analysis, several steps and data are used including:

- 1. Input-Output Matrix: Used to calculate the total impact (direct and indirect) of changes in sectors.
- 2. Leontief inverse matrix: Required to measure interactions between sectors.
- 3. Labor and GRDP data: Used to calculate the coefficient of labor per unit of output.
- 4. The employment multiplier is calculated by representing the number of jobs created per one additional unit of economic output.

This study uses data from the 2016 Provincial Input-Output Table of West Java Province, which covers 17 economic sectors. In this study, the input-output data used is from 2016, which is the latest available data and was updated by the Central Statistics Agency (BPS) in 2021. This limitation is due to the limited access to data as well as the timing of data updates which are carried out periodically by BPS. To address the gap between the 2016 Input-Output data and the more recent labor and GRDP data, this study integrates current statistics to reflect present economic conditions. While this approach provides a more updated picture, it may introduce minor estimation discrepancies due to temporal data mismatches.

Table 4. Business Field Codes and descriptions in Input-Output

CODE	Description
A	Agriculture, Forestry and Fisheries
В	Mining and Quarrying
С	Processing Industry
D	Electricity and Gas Procurement
E	Water Supply, Waste Management, Waste and Recycling
F	Construction
G	Wholesale and Retail Trade; Repair of Cars and Motorcycles
Н	Transportation and Warehousing
I	Provision of Accommodation and Drinking Meals
J	Information and Communication
K	Financial and Insurance Services
L	Real Estate
MN	Company Services
О	Government Administration, Defense and Compulsory Social Security
P	Education Services

Q	Health and Social Services
RSTU	Other Services
190d	Domestic Intermediate Input
2000	Foreign Import Intermediate Input
2001	Interprovincial Import Inputs
1900	Total Intermediate Inputs
2010	Labor Compensation
2020	Gross Operating Surplus (including mixed income)
2045	Net tax subsidy on production
2090	Gross Value Added
2100	Total Input

Table 5. Provincial Input-Output Table of West Java Province in 2016

Code	- A	18	D	(1)	1 1	1.3	- 6	- 11	100	1.74	- K	- 1	58%	0	7	. 0	RETU	130000	1811.00	3,612	160	3.000	3.841	3.001	1401	3.000
6691	9.307.0		99.182.7		00.00	279,907	10.4%	7.216.1	19,536		2091,6		30	405.62	MW-82	1304	578.32	95/269.3	42596.2	17.000		6.683.2	4.803.9	1.251.6	17.794	18.9%
9	107,416	74.88	Mutt	919,76	45,40	.81	360	- 6	196.95	7,40	7			2.76	16,00	29,36	6.89	36,39	11,21	5.4	15.5	31,62	22,65	89,58	435,46	325,36
-	9.890,5	5.022.9	34,782,4	13.80%	214.00	12,086	16.130	4162.1	1.001.1	6,763,8	5,3338	1,947,8	12.461.	36.60E	3,009,0	3,173.4	2.50%.6	45.762.6	.85.128.3	0.00	To del	763.454	613.34	4.27%	3.990.3	8,389.8
*	3	39,72	10392	607,79	832,74	879,65	81	- 6	ė		4	4.7	81	77		1	. 3	46.61	- 9	0.01	1.87	.40	0.47	20.91	89,83	18,95
	7.2% 4	1,499.5	401.621	1,684.8	69.20	21966	22.3%	31.965	11:905	2888.2	12882	1.772.6	5822A	26654	7.0953	8.867.8	6.096.3	1012.056	200.877		2,09.7	203.913.	-	289.145	589,734	438.902
C	95.EB	140.93	746.35	47.56	3.44	364,95	405.00	mate	000,94	39.24	stat	30.4E	/w.20	19.25	33,75	26,13	89.39	209.42	675.79	99.48	43.54	346,00	1,902.8	#20.1s	289.99	100,97
		1,000			1																		60,73			
6	99,657	207.23	24,997,0	52,736	196.17	111.60	2,160,7	Think	1230.3	2799.2	363/51	326-179	684,91	1.091.3	1003	(86.32	462.11	190,046.0	13.552.2	2.	100	27,30%	23847	15.100	5.843.2	5.940.5
100	. 20	47%	107,11	795,51	1.79	.19	25,91	.52	96,49	36.24	3,05	46	6,36	107,22	99,46	2.28	5,64	15,89	46,08	-	11111	16	4	30	61,45	14,58
1	110,042	4K2,08	317.902	3,883,9	229.24	104,695	009,993	111,425	288.845	10.17%	2,944,5	31,00%	31.834	28.5%	13.392	16.815	100.65	1,274,41	4/82/65	0.32	94,224	1,9818	1.815.1	133,465	697,194	1,038,5
-	45	1.447.0	74	- Albert	0,77	47	2.6572	27	37	777	8	14	74	- 20	79.	98	4.95	A.31	0.99	705-00	- 42	700.00	. 3	100	47	99,90
*	1.450.H 550H	32.61	7.408.37 4.00	64.80	7.18	23213	1.447.1	75.49	205,793	5.47	7,70	3,201.9	54076 6.40	1,996.7 V6.93	985	47679 2.32	556.56	11.31	1,300,76 5,34	100	2.6	285,334 446,94	154.23	80,445. 80	1273.3	25.80
100	1.565.6		34:006/8	LBSI	366.43	21:50		7.293.1	E80.1	-		594430	24743		2.132.2	1883	1259.0	197,717	100,000	1.550	408.61	21.010	157.71		66,822	
fa.	8030	4.60	12.44	16.30	7.06	476.30	11.75	14.27	54.55	2.17	908 set	13	1656	36.71	Jani	11,28	47.13	\$29,36	134,03	28	7.17	35540	1,25	41.620 689.32	996.37	297.69
	TOTOTAL	1.118.1	23,540.5	901.09	96/392	12.734	10.320	19.180	1,001	833.28	365.54	259 699	022:29	1,381.1	424.89	1894.91	-	86.327.3	-96.407.2		99301.	23699	19.489.	8.096 A	13.384	25.450.
11	36	TEST.	10.17	10	.10	646.00	W00.07	761,61	64.16	6.65	5.36	A2.	6.55	90.00	1.25	854	250.00	46.00	7936	185,09	90	71.66	71	94.59	919.45	614.00
	and some	194-35	2.649.37	75.676	36,744	Serv.240	249.257	881298	3.301.7	162.68	111.42	125.004	287,21	1.618.8	887.65	446.95	723.91	10.894.4	120.113	8.3%L	11-283	A2,399.	2.850.0	3.794.9	3.510.2	15.304
150	0.0	7.39	0.77	29	.10	46	43	315	61.25	3,76	3.19	.34	2.04	63,25	1,38	3.30	6.80	31.16	306.57	219	37	30	2	20.40	19,40	840.84
	97,365	93.910.	9,369,03	495.138	22,715	3.023	9.4823	1,745.4	1,691.3	10.991	1.461.8	189,544	1.494.6	300.62	1.145.7	428.65	966.50	39.1943	34,500,9		106.19	2.742.0	1.487.9	3.792.4	2.381.6	6,364.0
10	16	34	9.67	.47	.36	81.11	71,60	10,60	96,07	099,00	37,86	41	13.88	6,70	15.51	5.82	0.86	16.22	94,07	1,39	6.23	77.13	- 8	88.67	62.13	10,85
	798.581	332.35	30,659.1	2.394.2	96.872	4.949.2	8.803.1	1,404.0	1,223.5	1.899,8	3,0050	3.799.5	1.0000	12976	777.24	511.26	503.39	42.311.7	10.007,9	17.5	343.71	3.672.8	-200	194,770	3,200.5	3,365.7
(40)	-27	10,901	79,96	79.29	37	22.44	32,14	86,92	21,51	56.80	26.19	41,05	06,56	670	75,600	4.80	0.06	36.63	55.34	6.30	4.26	1	39,92	.29	4107	14.56
100		13.341	3,004.00		3765	1.015.9:	439353	409:421	107/17/1	50196	336.57	527,400	166,62	404.36	410.5V	579.72	540.95	13797.4	94.670.2		-			72,340.	6/32,129	704.729
. 2		32	6.14	1.0	15	45,44	99.54	.00	.IN	9.86	7.73	.46	1.40	4.64	12,90	1.06	4.61	107.26	51,70	1.4	1.40	10.50		41	.00	28
100	441.794	383,98	354547	23993	48.299	1.994.0	5.8%1	1.507.2	1.526.3	2.661.2	1201.9	789,600	4540.2	2863.1	13173	1.154.2	972.19	44905.7	1795.26	1.222	2002200	33964	100000	1.426.5	2,750.6	4:177.0
MEH	.75	0.76	30.90	62,71	36	88.76	03.01	31,58	97,36	23.13	19,99	.30	160,39	20,61	56.28	93,98	3.66	4630	6,07	2.29	605,99	80,26	262,61	2631	36,63	32,94
0	2,868.8		100	62.77%	549.75	100000		200,062	25372	13,589.	175.12	208.715	351,0%	385.43	112.84	73,774.	2.442.7	1,255,99	399,945		45/843	608.628		525,250	3,006.5	1,992,7
44	0.			38	9600,215			.29	74	146	7,87	.74	6.28	0,00	9.96	38	- 0	5.00	74		78445	197		/98	28.74	71,23
	1.128.0	1,885,7	343-675	27.8%	250.m	25.350,	32967	49.424	75,588	ULESS.	334.56	2.815.3	165.5e.	307,07	2.1956	90.563,	129.79	7.69436	45,465.6	1.505	35,75%	21,405	86,96	583,362	3.713.4	4.296.6
	.0	. 1	164	-365	570.00	. 36	5625	64:	46	.30	7.00	- 11	5,54	8,39	58,05	71	324	3,36	56,47	311,48	627,79	62	80,75	70	36.11	41,56
	104,780	10356	1355.99	V/10955	9300.	222,299	1.2993	47,625	00.207.	92843	48.8%	83068	47.136	0.747.9	620/23	657.11	DITM	4.453.00	25,716,1	409.54	5,895.4	40,705		1.563.7	4,893.5	5,607,3
Q	.00	32	5.84	1	42	.44	1443	67	55	3	10	1.	bo	1	438	3.46	9.97	471	24,13	5,67	36.13	65	3,575.6	44,07	71.00	38.12
		-		100	-		-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	7		-	
RSTIL	164,769	39.200.	2,962,97	144,485	239.7N	249.036	2,980.6	476.230	1,645.4	455.48	99,396.	461,639	196,60	18062	362,97	178.90	1.372.1	12.253.7	39.202.1	6.317	252,67	789-294	WLX25	MIZMT	4,265,7	4,575.9
10000	AN	-01	1,49	- 81	209	.50	N0.52	76	59,97	1,88	- 61	- 60	4.25	3,57	7,54	5.78	89,54	18.19	40.75	306,79	7.7W	.48	72	19	23,69	48,88
1990	722,40°	21/548	734.37%	76:313.	376.23	.796.23	87 VV.	004.70	56,467,	21,525 309,28	18.32%	(92.5)	15.445. ISE80	290.08	36,517	474.79	794.00	1,307,33 5 150,78	906.726. 204.0V	63G	92.146 734.42	427.372	4.083.1 15.99	359,384	487,537 .376,01	304.15
-		-		-	_	-	-	1,709.0	-		-	369.879	1,983.8			-	-		39.285.1	-	-	19,999.	-	935.15	-	-
2000	1.264.8	1,372.0 87.64	306.692	991,120	927.20 929	123807. 914.31	54,70	32,48	1.074.9	9.30	0.26	46	78.44	871.79	17172 30.06	1.125.9	12093	137.589 170.79	42.13	20.228	0.99	475,14	18.33	(4)	190,034	111034
20.00	4.647.2	6.389.0	243.715	11,496	420.34	33,892	17.655	9.099.4	17.664	5,969.0	2,4953	1,101.7	2.962.1	4.185.7	1284.4	71,58 1,540.0	3.06.1	277,450	39.3%	1.31%	4,773.9	20,251	-3,700 F	-	100/41	381.81
2081	67,47	08.41	717.06	315.12	9,71	900.45	272.37	26.22	308.41	25.66	04.00	35.91	57.46	79,99	43,30	54.01	13/2	97039	141,00	738,97	99.52	001.20	29.42			
	32,657	19.669	944.90	195,304	2,534	(25.347	313.2%	61.067	74.335	26,126	13.271	14.436	22.491	20.364	27.475	15.365	20.445	1222.27	1.215.21	P.SMT.	97,021	467,419	18.206	197244	447.571	814.816
1980	626,97	314.68	00.02	495,07	134.73	531.00	40531	487.00	198.72	095.24	113.07	(27.50)	546,72	8807	245.67	050:30	217.33	5301.55	4.483.03	662.13	739.90	A115.36	441.73	375.75	587,92	.496,96
	48.997.	8,290.0	297.313.	6.938.3	901.79	36.762	111.389	25.665	dwitt.	18,784.	19,830	4.196.9	17,970	22.300	43.715	31.2%	30,596	738,589		-	1 100,00	1 10000	-		1000	-1170-110
2010	841.14	60.85	908,92	28.54	2.33	din.87	.745.46	426,26	213.70	140.82	841.76	28.95	771.65	658,48	917.86	964,00	986,24	991.60								
-	15.425	26.946	333.934	23.779	2,580	77.934.	200,853	35,784	21.477	32,631	26.972	89.062	14.002	8.710.5	21.327	\$1,704	29,720	1.095,79	1							
2010	264.00	095,40	445,80	400.04	301.70	881.33	A59.87	873,71	152.68	1007.80	300,30	727,06	672.13	69.20	167,12	90.0	888,33	6,738,21	1							
-		1,750	52.525.77	400.04	100	100000	355		1-800	5250	10.000	333533	- 1	186,511			12000	100-21	1							
2040	2,000.7	791.35	42,676.3	12.276	487,60	39,365.	3.983,7	3,573.9	20.599.	3.153.8	431,39	559.189	1,298.3		471.26	215.05	2.865.9	131248								
100	99.18	0.09	81.36	771,75	5,94	196,95	9633	2529	595.31	32.07	1,46	.74	25,36	- 15	7.34	0.54	99.11	383,37								
	139,522	35,940.	714.124	20,439	394	134,092	277.829	89.80%	18.094	54,569.	48.854	96,679.	35,351.	30.814.	16.519	31,794	43.183	1.869.55	1							
2060	.918.32	307.30	\$28,98	800,09	900,53	.089,17	395,60	225,26	107.89	000.50	33034	834,06	633,13	347.18	272.51	925.37	728,70	8.073.20								
	199.580	55.600.	1.482.71	108.603		312.429	399.000	180,961	142.386	42,895	62,696	109,199		51,859	93.018			5,591,63	1							

Source: Input Output Table of Jawa Barat Province 2016 Fiscal Year 2021

Table 6. Leontif Inverse Matrix of West Java Province 17 Business Fields, 2016

Occuptors		Agriculos, honory and Diductor	Mining and Quarrying	Faxestrag Indicity	Somety and Gas Procurement	Note: Supply, Name Management, Name and Recycling	Commercies	Mindesole and Retail Trade; Repair of Cars and Matericycles	Transportation and Washinsing	Provision of Access modifies and Direking Modifie	Information and Commentation	Ebecratal and Breamon Services	Real Bear	Company Services	Community Administration, Defense and Compulsory Social Security	Private Education Services	Private Health and Section Section	Other Private Service o
	Colle	A		- 0	D	E	F.	G	- 18	.1	. 1	- 30	1.	MN	O.	P.	. 0	RSTU
Agricultus; Foresty and Fisherian	ж	1,061606007	0,00090373	AMERICANA A	0.00081922	0.007490275	rumerrada	1,009002044	0,012061214	0.0314076139	10000000	0,002300496	4,6177,776	0,087734118	1,0179ed11	dynamic	AUNIOTOMET	1,017470406
Agricultus, Scaretry and Tightnier	103	6,0004101	1,10296371	0,009742803	0.273(0.564)	D01359186	10,040072267	1,009438	0,09-3-6127	(006)4697	ALL RESINTERS	1(8/2519090	1,00021340	0,00000423	L01010079	11,005700014	0,005415172	1,0711106
Processing Industry	6	0.07250WIT	0,063381789	1.38890673	0.080617921	0.172009394	0,546700649	ESSENTS.	0.500431209	0.150862159	6,0085841	0.04901522	10038114331	0.1790200409	8,817740929	0.125258787	17,221 (886)	1,150034262
Electricity and Cax Propagation	10	0.00152411	0.001051242	0.000457/ee	Letterest	(UNIAGOSTRI	(Unitalities)	8,017540528	Latowan	(UNITSIA)D4	summirses	0.012766676	6,004,007	Watehasa	5/047279063	(UDVSSWA)	0.019079482	1,01601245
Manageroevit, Hante yalf Kanagaraevit, Kanagaraevit, Kanagaraevit,		4,00090290	596000-65	0.000000142	0000093423	1,00727481	11,00036-0127	1,000,07544	0,000;7500;	0.002307469	0,00012234	60001008	0,000,000	10,000727212	1,400765314	0.00033946	ONESOSAL	1,000774829
Construction		0.011.016259	0.00914527	0.008794094	0.01.029696	0.09167685	1,012383509	0.00607705	0,0102,89464	0.009743090	(1/0569883	B.84.1307074	1,050(3052)	0.033144465	0.00359857	(0.007)779887	0.065287067	1.019802934
Whelesale and Betal Deale Repair of Cars and Motorcycles	o.	0/02/98/5/14	0/(0/8/2013	Operations	Q.ECWIZENION	Openities	0,096417349	1,053234396	0,071727088	O.DROSymotos	quiexas	0,015066155	1,010027313	0,0092940	1,64279020	0.03952868	0,066672185	1,642'64309
Transportation and Wordwaing	М	0.006511745	(0.004067049)	0.006455280	6823564083	0.019536566	0.099291405	J,104089028	1.140674378	0.002758661	0.06453572	(,10668730	1,0074582	0,008194852	Consteading	0.015429001	0.020582225	1,012(4815)
Previous of According and Deleting Media	Ŧ.	4.000742917	0.00589139	0.002740005	0.002907894	0.003965295	6.00009182	1,900/84817	A@0072133	137.6879429	0.002892362	0.00502014	6,87171465	0,000,002,008	6,033847296	00000229487	0.012345649	0.01247403
Infortration and Contractionistics	£3	0,002291011	0.084828038	0.0121.000(0)	0.815442834	Characteresco	0,01790767	1,0196(184)	0,008170997	0.002959589	13000147	0.006947907	1,00000438	0,007342898	1,000,049867	0.007959164	0.012332277	1,021242903
Premierand Insurance Services	K	0,006441422	(0003419796	0.014120746	0.051349	0.022540056	0,023791088	1027198912	contract/s	not Seuton	(1/2527461)	1,0594(67)	8.038463915	0/25425255	0.61131122	(0.02954145	0.000421777	1,014135002
Ken f Detale	L.	d/appropries	0.001303639	0.804007528	0.001396111	0.002354525	0,009009939	0.01400943	d/mmodiae	0,06843712	0.00496.9925	0.006410841	10009992418	0.094956498	1,009034976	0.096863921	0.016947207	1,01000621
Company Services	MN	0.0099000	0.0009445	0,08811413	(predicted	0.015000538	0.004999573	1,021/06/16	0.017862560	0.014658944	0.04060135	0.09456098	0,00900001	1,090917045	(4625)1951	0.007990790	0.032590181	0.0250764
Government Administration, Defense and Compalisory Social Security	0	1,927088-ES	0,080023889	0.000183926	0.001405390	0.000289984	0,080217902	1,01023000	0,081579142	0.0003576AT	0,000454299	0.800192441	6,000e0618	0.080700121	1,004001001	0.0014/0147	0.002133961	1,000220964
Firms Education Services	E	0.000145549	(0.0094087	(1801) 10295	0.08133833	tuxxx14eepe	8,00118899	£009118368	0,001384198	(um.ehse	10,000,000,000	0.805697105	6,000,000,000,000	(0.004090512	1,007150990	1,005935961	0.000047194	1,002715111
Private Health and Social Sections	0	s/measur	0,000,000	0.0005600	0.0000871	0.001945556	10001116988	1,0000005	0,000059265	0,00099023	11,000100036	(00096159)	8,000,000,000	IU001361239	0.0054394	0.005813659	1,022304455	6,002197709
Other Private Services	11513	0,000705174	0.001364681	0,003678431	0.002647235	0,040096049	8,00275084	0,00056804	0,004758466	0,013/04112	0.007032066	0,002394556	0,004040564	0,00444556	1,004/3693	0,004209000	0.000025447	1,01321369

Source: BPS data of West Java Province 2021

Labor Coefficient

To obtain the multiplier effect analysis, it is necessary to calculate the labor coefficient. From the labor data per sector in West Java Province and the I-O table, the labor coefficient is obtained in the following table.

Table 7. Labor Coefficient per green economy supporting sector in West Java

Sector	Output 2023	Labor Force 2023	Labor Coefficient
	-		
A. Agriculture, Forestry and Fisheries	221650,6	4161968	18,78
B. Mining and Quarrying	26089,3	121277	4,65
C. Processing Industry	1099081	4207511	3,83
D. Electricity and Gas Procurement	12221,17	122211	10
F. Construction	221150,7	1772421	8,01
H. Transportation and Warehousing	155099,8	1488314	9,6
I. Provision of Accommodation and	79501,42	1435913	18,06
Meals			
J. Information and Communication	100002,6	851986	8,52
K. Financial Services and Insurance	74126,25	283925	3,83
M,N. Corporate Services	12091,47	504370	41,71
P. Education Services	86301,84	1104979	12,8
Q. Health Services and Social Activities	20978,21	326995	15,59

Source: Analysis Results, 2024

Based on the above data, the Agriculture, Forestry and Fisheries sector (coefficient: 18.78) is highly labor-intensive, reflecting the high reliance on manual labor. In the context of green jobs, this sector has the potential to create sustainable jobs through organic farming, land rehabilitation and agroforestry.

The Manufacturing Industry sector (coefficient: 3.83) is relatively capitalintensive, relying on technology for efficiency. Its applications in green jobs include the adoption of low-carbon technologies, energy efficiency, and recycling of raw materials.

The Corporate Services sector (coefficient: 41.71) is the most labor-intensive, requiring a large number of workers with specialized skills. The sector's green potential lies in technical support for the transition to a green economy, such as renewable energy management and environmental solutions.

Employment multiplier

After obtaining some results above, data processing will be carried out to determine the Employment Multiplier Effect by multiplying the labor coefficient with the Leontief matrix to calculate the multiplier effect.

Table 8. Employment Multiplier Analysis

Sector Code	Sector Description	Number of Workers	GRDP 2023 (Billion Rupiah)	Employment Multiplier		
A	Agriculture, Forestry and Fisheries	4.160.000	221650,6	53.281.394,23		
В	Mining and Quarrying	50.000	26089,3	521.786.000,00		
С	Processing Industry	4.210.000	1099081	261.064.370,55		
D	Electricity and Gas Procurement	50.000	12221,17	244.423.400,00		
Е	Water Supply, Waste Management, Waste and Recycling	130.000	2575,78	19.813.692,31		
F	Construction	1.770.000	221150,7	124.943.898,31		
G	Wholesale and Retail Trade	5.110.000	378832,7	74.135.557,73		
Н	Transportation and Warehousing	1.170.000	155099,8	132.563.931,62		
I	Provision of Accommodation and Drinking Meals	2.310.000	79501,42	34.416.199,13		
J	Information and Communication	180.000	100002,6	555.570.000,00		
K	Financial and Insurance Services	280.000	74126,25	264.736.607,14		
L	Real Estate	130.000	30746,38	236.510.615,38		
MN	Company Services	350.000	12091,47	34.547.057,14		
О	Government Administration, Defense and Compulsory Social Security	570.000	46278,92	81.191.087,72		
P	Education Services	1.100.000	86301,84	78.456.218,18		
Q	Health and Social Services	330.000	20978,21	63.570.333,33		
RSTU	Other Services	1.210.000	58490,22	48.339.024,79		

Source: Analysis Results, 2024

Based on the results of the employment multiplier effect analysis, the following are the sectors with the highest potential in creating employment in West Java:

- 1. Information and Communication The highest employment multiplier, driving job creation in digital technology, telecom, and IT infrastructure.
- 2. Mining and Quarrying Strong job potential in the raw material and energy supply chain, requiring green regulations for sustainability.
- 3. Financial Services and Insurance Significant impact on formal job creation, particularly in sustainable finance and risk protection.
- 4. Processing Industry A major employment driver, supporting transportation, logistics, and raw material supply, with green industry potential.
- 5. Electricity and Gas Procurement Renewable energy investments create jobs in infrastructure development and technological innovation.

Sectors with high employment multiplier values reflect their ability to drive widespread job creation, both directly and through indirect and induced impacts. For instance, the high multiplier in the Information and Communication sector may result from its integration with digital infrastructure projects and service networks, while in

Mining, it may reflect the extensive supply chains and service demands linked to extractive activities. With a focus on the information and communication, financial services, and manufacturing sectors, West Java has a great opportunity to accelerate the transition to an inclusive green economy. Strengthening sustainability and technology-based policies is key to maximizing this potential while supporting the vision of RPJMD 2024-2030.

Recommended strategies to promote green job growth

Green job potential based on sectors with the highest potential to create jobs in West Java Province from the employment multiplier effect analysis.

Table 9. Potential green jobs based on Employment Multiplier Effect

Sector	Green Job Potential	Green Strategy
Information and	Development of energy efficiency	Public-private collaboration on
Communication	technologies and digital platforms	digital infrastructure for green
	for	economy
	the green sector	
Mining and	Environmentally friendly mining	Strict regulation of sustainable
Quarrying	and rehabilitation of ex-mining	practices and incentivization of
	land	low-emission
		technologies
Financial and	Development of green financial	Promotion of financial inclusion
Insurance	products and sustainable project	for green MSMEs and
Services	financing	microfinance
Processing	Recycling of industrial waste and	Fiscal incentives for green
Industry	adoption of energy efficiency	production and green
	technologies	technologies
Electricity	Development of renewable energy	Public and private investment for
and Gas	infrastructure such as solar and	clean energy development
Procurement	wind	
	power	

Source: Result Analysis 2024

The analysis shows that several sectors have great potential to support the development of green jobs in West Java. These sectors include manufacturing, transportation and storage, agriculture, and renewable energy. In the manufacturing sector, policies that can be implemented include providing tax incentives to companies that implement low-carbon technologies and recycling processes.

In the transportation and warehousing sector, relevant policies include subsidizing electric vehicles for logistics and investing in green transportation infrastructure. Meanwhile, the agriculture sector can utilize policies to develop sustainable agricultural systems, such as agroforestry, and training farmers in organic farming

practices.

The renewable energy sector also has great opportunities through the policy of funding solar power projects in rural areas that lack access to electricity. This policy strategy is in line with the Regional Medium-Term Development Plan (RPJMD) of West Java Province, which emphasizes environmental sustainability and inclusiveness in economic development. With this approach, West Java can accelerate the transition to a sustainable green economy.

CONCLUSIONS

This research shows that the West Java economy has great potential to support the transition to a sustainable green economy. Based on the analysis, sectors such as manufacturing industry, transportation and storage, agriculture, and renewable energy are leading sectors that contribute significantly to Gross Regional Domestic Product (GRDP). In 2023, the manufacturing industry sector contributed IDR 1,099.08 trillion to GRDP (41.9% of total GRDP), followed by the wholesale and retail trade sector at IDR 378.83 trillion, and the agriculture, forestry and fisheries sector at IDR 221.65 trillion.

The analysis shows that the manufacturing sector has a large multiplier effect in creating green jobs, especially through the adoption of low-carbon technology and material recycling. The transportation and storage sector, which contributes IDR 155.10 trillion to GRDP with a labor coefficient of 9.6, has great potential for the development of green transportation. In the agriculture sector, with a GRDP of IDR 221.65 trillion and a labor contribution of 4.16 million people (17.79% of the total), sustainable agriculture policies can improve efficiency and food security.

The renewable energy sector, although smaller with a GRDP contribution of IDR 12.22 trillion, shows development opportunities through investment in solar power plants and other renewable energy. The social and community services sector also has a large multiplier effect on people's income, reflecting the importance of integrating the social dimension in green economic development.

Changes in the structure of the West Java economy from 2016 to 2023 also reflect shifts in the pattern of inter-sectoral linkages, signaling new dynamics in production and consumption patterns. This transformation provides an opportunity for West Java to utilize green investment as a driver of inclusive and sustainable economic growth.

With a strategy that includes tax incentives, subsidies for green technology, and green infrastructure funding, West Java can accelerate the transition to a green economy. This combination of data-driven approaches and innovative policies supports the vision of the Regional Medium-Term Development Plan (RPJMD), which is oriented towards sustainability and community welfare.

CONCLUSIONS

This research shows that the West Java economy has great potential to support the transition to a sustainable green economy. Based on the analysis, sectors such as manufacturing industry, transportation and storage, agriculture, and renewable energy are leading sectors that contribute significantly to Gross Regional Domestic Product (GRDP). In 2023, the manufacturing industry sector contributed IDR 1,099.08 trillion to GRDP (41.9% of total GRDP), followed by the wholesale and retail trade sector at IDR 378.83 trillion, and the agriculture, forestry and fisheries sector at IDR 221.65 trillion.

The analysis shows that the manufacturing sector has a large multiplier effect in creating green jobs, especially through the adoption of low-carbon technology and material recycling. The transportation and storage sector, which contributes IDR 155.10 trillion to GRDP with a labor coefficient of 9.6, has great potential for the development of green transportation. In the agriculture sector, with a GRDP of IDR 221.65 trillion and a labor contribution of 4.16 million people (17.79% of the total), sustainable agriculture policies can improve efficiency and food security.

The renewable energy sector, although smaller with a GRDP contribution of IDR 12.22 trillion, shows development opportunities through investment in solar power plants and other renewable energy. The social and community services sector also has a large multiplier effect on people's income, reflecting the importance of integrating the social dimension in green economic development.

Changes in the structure of the West Java economy from 2016 to 2023 also reflect shifts in the pattern of inter-sectoral linkages, signaling new dynamics in production and consumption patterns. This transformation provides an opportunity for West Java to utilize green investment as a driver of inclusive and sustainable economic growth.

With a strategy that includes tax incentives, subsidies for green technology, and green infrastructure funding, West Java can accelerate the transition to a green economy. This combination of data-driven approaches and innovative policies supports the vision of the Regional Medium-Term Development Plan (RPJMD), which is oriented towards sustainability and community welfare.

Acknowledgment: I recognize the utilization of Chat GPT in gathering information for background research and during the initial drafting phase of this essay, particularly in formulating the outline structure for this article.

REFERENCES

Andrew Jarvis et al. (2011). Assessing Green Jobs Potential in Developing Countries: A Practitioner's Guide. International Labour Organization.

Badan Pusat Statistik (2021). Input Output Table of Jawa Barat Province 2016 Fiscal Year. Badan Pusat Statistik Jawa Barat.

Badan Pusat Statistik (2023). Keadaan Angkatan Kerja di Provinsi Jawa Barat Februari 2023. Badan Pusat Statistik.

Daryanto, A., & Hafizrianda, Y. (2010). Model Input-Output dan Social Accounting Matrix untuk Analisis Dampak Ekonomi. IPB Press.

Domański, B., & Gwosdz, K. (2010). Multiplier effects in local and regional development. Quaestiones Geographicae, 29(2), 27–37. https://doi.org/10.2478/v10117-010-0015-1

Firmana, V., & Tjahjawandita, A. (2021). Analisis Peranan Aktivitas Sektor-Sektor Ekonomi terhadap Perekonomian Jawa Barat: Aplikasi Model Input-Output. Jurnal Ekonomi dan Pembangunan Daerah, 3(1), 45–58.

International Labour Organization (2020). World Employment Social Outlook: Trends 2020. International Labour Organization.